Noncanonical interactions in the management of RNA structural blocks by the transcription termination rho helicase.
نویسندگان
چکیده
To trigger transcription termination, the ring-shaped RNA-DNA helicase Rho from Escherichia coli chases the RNA polymerase along the nascent transcript, starting from a single-stranded C-rich Rut (Rho utilization) loading site. In some instances, a small hairpin structure divides harmlessly the C-rich loading region into two smaller Rut subsites, best exemplified by the tR1 terminator from phage lambda. Here, we show that the Rho helicase can also elude a RNA structural block located far downstream from the single-stranded C-rich region but upstream from a reporter RNA-DNA hybrid. In this process, Rho hexamers do not melt the intervening RNA motif but require single-stranded RNA segments on both of its sides. The reaction is also favored by physiological glutamate ions and can implicate Rho primary recognition of 5'-YC dimers (as for Rut binding) significantly upstream (>70 nucleotides) from the intervening motif. Surprisingly, we also found that primary interactions of Rho with 2'-hydroxyl groups located upstream from the intervening RNA structure serve to elude the motif. This demonstrates that the preference of Rho for RNA residues is not limited to the secondary interaction site that mediates ATPase-fuelled mechanochemistry within the hexamer central channel. These features could be part of an energy-effective mechanism in which Brownian exploration of the conformation of the Rho-substrate complex and accommodation of downstream secondary structures within a composite primary interaction site replace ATP-dependent translocation of the Rho enzyme along corresponding structured portions of the RNA chain.
منابع مشابه
A physical model for the translocation and helicase activities of Escherichia coli transcription termination protein Rho.
Transcription termination protein Rho of Escherichia coli interacts with newly synthesized RNA chains and brings about their release from elongation complexes paused at specific Rho-dependent termination sites. Rho is thought to accomplish this by binding to a specific Rho "loading site" on the nascent RNA and then translocating preferentially along the transcript in a 5'-->3' direction. On rea...
متن کاملStructure of rho factor: an RNA-binding domain and a separate region with strong similarity to proven ATP-binding domains.
The domain structure of rho protein, a transcription termination factor of Escherichia coli, was analyzed by oligonucleotide site-directed mutagenesis and chemical modification methods. The single cysteine at position 202, previously thought to be essential for rho function, was changed to serine or to glycine with no detectable effects on the protein's hexameric structure, RNA-binding ability,...
متن کاملRho-dependent transcription termination: more questions than answers.
Escherichia coli protein Rho is required for the factor-dependent transcription termination by an RNA polymerase and is essential for the viability of the cell. It is a homohexameric protein that recognizes and binds preferably to C-rich sites in the transcribed RNA. Once bound to RNA, it utilizes RNA-dependent ATPase activity and subsequently ATPase-dependent helicase activity to unwind RNA-DN...
متن کاملLoading Rho to Terminate Transcription
In bacteria, one of the major transcriptional termination mechanisms requires a hexameric RNA/DNA helicase known as Rho. One question that has remained unanswered is how the helicase loads onto a nascent transcript so that it can initiate actions on the transcript to cause termination. Recent structures of Rho bound to nucleic acid by show how the individual RNA-binding domains of the 6 subunit...
متن کاملRNA secondary structures regulate three steps of Rho-dependent transcription termination within a bacterial mRNA leader
Transcription termination events in bacteria often require the RNA helicase Rho. Typically, Rho promotes termination at the end of coding sequences, but it can also terminate transcription within leader regions to implement regulatory decisions. Rho-dependent termination requires initial recognition of a Rho utilization (rut) site on a nascent RNA by Rho's primary binding surface. However, it i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 46 33 شماره
صفحات -
تاریخ انتشار 2007